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Phase-field model for binary alloys
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We present a phase-field model~PFM! for solidification in binary alloys, which is found from the phase-field
model for a pure material by direct comparison of the variables for a pure material solidification and alloy
solidification. The model appears to be equivalent with the Wheeler-Boettinger-McFadden~WBM! model
@A.A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. A45, 7424 ~1992!#, but has a different
definition of the free energy density for interfacial region. An extra potential originated from the free energy
density definition in the WBM model disappears in this model. At a dilute solution limit, the model is reduced
to the Tiadenet al.model@Physica D115, 73 ~1998!# for a binary alloy. A relationship between the phase-field
mobility and the interface kinetics coefficient is derived at a thin-interface limit condition under an assumption
of negligible diffusivity in the solid phase. For a dilute alloy, a steady-state solution of the concentration profile
across the diffuse interface is obtained as a function of the interface velocity and the resultant partition
coefficient is compared with the previous solute trapping model. For one dimensional steady-state solidifica-
tion, where the classical sharp-interface model is exactly soluble, we perform numerical simulations of the
phase-field model: At low interface velocity, the simulated results from the thin-interface PFM are in excellent
agreement with the exact solutions. As the partition coefficient becomes close to unit at high interface veloci-
ties, whereas, the sharp-interface PFM yields the correct answer.@S1063-651X~99!08712-7#

PACS number~s!: 64.70.Dv, 81.30.Fb, 81.10.Aj, 05.70.Ln
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I. INTRODUCTION

The phase-field model~PFM! is known to be very pow-
erful in describing the complex pattern evolution of the
terface between mother and new phases in the nonequ
rium state because all the governing equations are writte
unified ones in the whole space of system. The model wh
was originally proposed for simulating dendritic growth
pure undercooled melt@1–9# has been extended to solidifi
cation modeling of alloys@10–20#.

The PFMs for alloy solidification may be divided int
three groups depending on the definition of free energy d
sity for interfacial region and how they were derived: T
first is a model by Wheeler, Boettinger, and McFadd
~WBM! model@10,13#. Caginalp and Xie@16# have proposed
a similar model. The second is a model by Steinbachet al.
@17,18# The thirds are the models by Losertet al. @19#, and
Löwen, Bechhoefer, and Tuckerman@20#, which are analogi-
cal versions of the PFM of pure materials.

The WBM model that has been used most wide
@10,11,13,21,22# is derived in a thermodynamically consi
tent way@13#. In the model, any point within the interfacia
region is assumed to be a mixture of solid and liquid b
with the same composition. The phase field parameters in
model can be determined not only at a sharp interface l
condition @10#, but also at a finite interface thickness cond
tion @23#. It has been shown that the model can reprod
correctly the solute trapping phenomena at a high interf
PRE 601063-651X/99/60~6!/7186~12!/$15.00
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velocity @21–23#. A problem in this model, especially in nu
merical simulation where a finite interface thickness is
sumed, is the parameters varying depending on the inter
thickness@23#. Due to chemical energy contribution to th
interfacial energy, there is a certain limit in the interfa
thickness, which is not only restricted by the interface e
ergy, but also the difference between the equilibrium liqu
and solid compositions.

The model by Steinbach and co-workers@17,18# uses a
different definition for the free energy density. In the mod
the interfacial region is assumed to be a mixture of solid a
liquid with different compositions, but constant in their rati
Even though the derivation of governing equations in
model was not made in a thermodynamically consistent w
there is no limit in the interface thickness. The model
thermodynamically correct for a dilute alloy only.

It has long been realized that the governing equations
scribing alloy solidification are similar to the ones corr
sponding to pure material@24#. This enables us to exten
straightforwardly the PFM for a pure material to an allo
PFM, by matching the variables in the pure material probl
to the alloy problem. In this way, Losertet al. @19# extended
the thin-interface PFM for a pure material to an alloy ca
which permits us to find vanishing interface kinetics coe
cient. However, their model is based on two unrealistic
sumptions: First the liquidus and solidus lines in the ph
diagram were assumed to be parallel and secondly the so
diffusivity is constant in the whole space of the system.
7186 © 1999 The American Physical Society
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PRE 60 7187PHASE-FIELD MODEL FOR BINARY ALLOYS
general, the slopes of liquidus and solidus lines in the ph
diagrams of most alloys are significantly different from ea
other and the diffusivity in solid phase is much smaller th
that in liquid phase by about orders of 5.

In this study, we present an alloy PFM and describe
properties in detail. The model is a natural extension of
PFM for pure materials and may also be derived in a th
modynamically consistent way. The model is free from t
limit in the interface thickness in the WBM model@10,13#,
and the unrealistic assumptions in the Losertet al. model
@19#, and correctly generates the solute trapping phenom
at high interface velocity. In Sec. II, by reexamining th
correspondence between the variables in the sharp inte
model of pure material solidification and alloy solidificatio
we find an alloy PFM from a pure material PFM. It will als
be shown that the model is equivalent to the WBM mo
@10,13#, only with a different definition of the free energ
density for the interfacial region. Also it will be shown th
in a very dilute solution the present model can be reduce
the Steinbach and co-workers model@17,18# for a binary
alloy. In Sec. III, a relationship between the phase-field m
bility and the interface kinetics coefficient is derived at
thin-interface limit condition under an assumption of neg
gible diffusivity in solid phase, which permits not only
vanishing kinetics coefficient, but also a thick interfa
width, as in Refs.@25#, @19#. In Sec. IV, for a dilute alloy, a
steady-state solution of the concentration profile across
interface is derived as a function of the interface velocity a
the resultant partition coefficient is compared with the h
velocity asymptotics@22# of the WBM model. In Sec. V, at
one-dimensional~1D! steady state where the classical sha
interface model is exactly soluble, we perform numeri
simulations for the PFM with the parameters determined
the thin-interface limit~thin-interface PFM! and the sharp
interface limit conditions~sharp-interface PFM!.

II. ALLOY PHASE-FIELD MODEL

A. An alloy phase-field model

At first we examine the correspondence between varia
in governing equations of pure material and alloy solidific
tion in the classical sharp interface models. When the s
cific heats of solid and liquid are same and independen
temperature, the enthalpies per unit volume of solid and
uid of a pure material as a function of temperature are gi
by

HS~TS!5HS~Tm!1cp~TS2Tm!, ~1!

HL~TL!5HL~Tm!1cp~TL2Tm!, ~2!

respectively, whereTS andTL are the temperatures of soli
and liquid, respectively,Tm is the melting temperature of th
pure material, andcp is the specific heat. Then the classic
sharp-interface model describing the solidification in a p
material may be written as

~HS! t5DS
T¹2HS , ~3!

~HL! t5DL
T¹2HL , ~4!
se

n

s
e
r-
e

na

ce

l

to

-

e
d

p
l
t

es
-
e-
of
-
n

l
e

TS
i 5TL

i 5Tm2
Tm

DH f

2s

r
2bV, ~5!

~HL
i 2HS

i !V5DS
T ]HS

]n
2DL

T]HL

]n
, ~6!

where the subscriptt and]/]n mean the partial derivative by
time and the interface normal derivative, respectively,DS

T

andDL
T are thermal diffusivities of solid and liquid, respe

tively, the superscripti on temperature and enthalpy denot
the values at the interface,s is the interface energy,r is the
radius of the interface curvature,V is the interface velocity,
b is the interface kinetics coefficient, andDH f(5HL

i 2HS
i )

is the latent heat of melting. Equation~5! is the Gibbs-
Thomson condition corrected by a kinetic undercooling
fect and Eq.~6! is the energy balance condition at the inte
face. Using Eqs.~1! and~2!, if the enthalpy notations in Eqs
~3!, ~4! and the right-hand side of Eq.~6! are replaced by the
temperature notations, the above equations appear to
equivalent to the traditional forms. Now we write the clas
cal sharp interface model for isothermal solidification of
alloy as

~cS! t5DS¹2cS , ~7!

~cL! t5DL¹2cL , ~8!

f cS

S ~cS
i !5 f cL

L ~cL
i !5 f c

e2
DH f

Tm~cL
e2cS

e!
bV2

2s

r ~cL
e2cS

e!
,

~9!

~cL
i 2cS

i !V5DS

]cS

]n
2DL

]cL

]n
, ~10!

where cS and cL are the compositions of solid and liquid
respectively,DS and DL are the diffusivities of solute in
solid and liquid, respectively,cS

i andcL
i are the compositions

of solid side and liquid side at the interface, respectively,cS
e

andcL
e are the equilibrium compositions of solid and liqu

at a given temperature, respectively,f cS

S and f cL

L are the

chemical potential of solid and liquid, respectively, andf c
e is

the chemical potential at a thermodynamic equilibrium sta
Hereafter the chemical potential denotes the relative che
cal potential of solute with respect to solvent. By compari
Eqs. ~7!–~10! with Eqs. ~3!–~6!, we can see that replacin
the enthalpy and the temperature in the equations for a p
material by the composition and the chemical potential,
spectively, yields the equations for isothermal solidificati
in an alloy. This correspondence between the variables m
permit us to derive an alloy PFM from the PFM for a pu
material.

Let us write the PFM for the solidification of a pure m
terial, which is basically the same as the previously repor
form @5–9#, as follows:

Ht5¹•k~f!¹T, ~11!

f t5M ~e2¹2f2 f f!, ~12!

H5h~f!HS1@12h~f!#HL , ~13!
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TS~x,t !5TL~x,t ![T~x,t !, ~14!

f @H~T!,f#5h~f! f S@HS~TS!#

1@12h~f!# f L@HL~TL!#1wg~f!, ~15!

where we defined the phase fieldf51 at solid andf50 at
liquid, k(f) is the thermal conductivity,M is phase-field
mobility, e is the coefficient of phase-field gradient ener
term in the relevant free energy functional,w is the height of
the double-well potential,f S and f L are the free energy den
sities of solid and liquid as a function of temperature
enthalpy, respectively, andg(f) is a double-well potential.
The function h(f) is a monotonously changing functio
from h(0)50 to h(1)51. In Eqs.~13!–~15! we should note
that the interfacial region is assumed to be a mixture of s
and liquid with a same temperature. WhenH is eliminated by
using Eqs.~1! and~2!, Eqs.~11!–~15! can be reduced to only
two equations

cpTt2DH fh8~f!f t5¹•k~f!¹T, ~16!

f t5M @e2¹2f1h8~f!~ f L2 f S!2wg8~f!#, ~17!

which are identical with those in the PFM for a pure mater
@5–9#.

Using the correspondence between the variables in
classical sharp interface models for pure material and a
solidification, that is, simply replacingH andT in Eqs.~11!–
~15! by c and f c , respectively, we can immediately write th
equations for an alloy PFM as follows:

ct5¹•

D~f!

f cc
¹ f c , ~18!

f t5M ~e2¹2f2 f f!, ~19!

together with

c5h~f!cS1@12h~f!#cL , ~20!

f cS

S @cS~x,t !#5 f cL

L @cL~x,t !#, ~21!

f ~c,f!5h~f! f S~cS!1@12h~f!# f L~cL!1wg~f!,
~22!

whereD(f) is the diffusivity dependent on the phase fie
f S and f L are the free energy densities of solid and liquid
functions of composition, which can be given either by
solution model of an alloy or thermodynamic data. In E
~18!, f cc was added to guarantee a constant diffusivities
both the bulk solid and liquid. The diffusion equation~18!
and the phase-field equation~19! are the same as those in th
WBM model @13#, which were derived in a thermodynam
cally consistent way. In Eqs.~20!–~22!, however, the inter-
facial region is defined as a mixture of solid and liquid w
compositions different from each other, but with a sa
chemical potential. In the WBM model@10,13#, on the con-
trary, the interfacial region was defined as a mixture of so
and liquid with a same composition, but with differe
chemical potentials. If the condition~21! is replaced by a
condition cS5cL5c, the above model is reduced to th
WBM model. Which definition for the interfacial region i
r
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more physically resonable does not matter, because the
terfacial region in PFMs cannot be regarded as a phys
real entity, but as a mathematical entity for technical con
nience. It should be mentioned thatcS and cL in Eqs. ~20!
and ~21! are not the compositions of the solid and liqu
sides of the interface, but the compositions of solid and
uid, respectively, at a certain infinitesimal point which
assumed to be a mixture of solid and liquid phases. Thus
condition~21! does not imply the constant chemical potent
throughout the interfacial region. It is constant across
interface only at a thermodynamic equilibrium state, whi
will be shown later. The chemical potential can vary acro
the moving interface from the chemical potential at the so
side to the chemical potential at the liquid side of the int
face, which results in the solute trapping effect@26–28#. In
most alloys except for some specific~ideal or regular! solu-
tions, the material properties such as interface energy
interface kinetics coefficient of an alloy are seldom deriva
from the data of pure solvent and pure solute. In this ca
the properties of the alloy can be given as constants in m
cases. Therefore we assumed that the material propertie
independent of the composition.

Equations~18! and ~19! in the present model may b
modified into more tractable forms described explicitly bycS
and cL instead ofc. RegardingcS and cL as functions ofc
and f, from Eqs.~20! and ~21! we can get following four
relationships:

]cL

]c
5

f cc
S ~cS!

@12h~f!# f cc
S ~cS!1h~f! f cc

L ~cL!
, ~23!

]cS

]c
5

f cc
L ~cL!

@12h~f!# f cc
S ~cS!1h~f! f cc

L ~cL!
, ~24!

]cL

]f
5

h8~f!~cL2cS! f cc
S ~cS!

@12h~f!# f cc
S ~cS!1h~f! f cc

L ~cL!
, ~25!

]cS

]f
5

h8~f!~cL2cS! f cc
L ~cL!

@12h~f!# f cc
S ~cS!1h~f! f cc

L ~cL!
, ~26!

where we used the notations off cc
L (cL)[d2f L(cL)/dcL

2 and
f cc

S (cS)[d2f S(cS)/dcS
2 . Using these four relationships, from

the definition~22! of the free energy density we can deriv

f f~c,f!52h8~f!F f L~cL!2 f S~cS!2
d fL~cL!

dcL
~cL2cS!G

1wg8~f!, ~27!

f c~c,f!5
d fL~cL!

dcL
5

d fS~cS!

dcS
, ~28!

f cc~c,f!5
f cc

S ~cS! f cc
L ~cL!

@12h~f!# f cc
S ~cS!1h~f! f cc

L ~cL!
, ~29!

f cf~c,f!

f cc~c,f!
5h8~f!~cL2cS!. ~30!

Inserting Eqs.~27! and ~28! into Eqs.~18! and ~19!, we get
the explicit forms of the present model:
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1

M
f t5¹•e2¹f1h8~f!@ f L~cL!2 f S~cS!

2~cL2cS! f cL

L ~cL!#2wg8~f!, ~31!

]c

]t
5¹FD~f!

f cc
¹ f cL

L ~cL!G ~32!

together with auxiliary equations~20!, ~21!, and~29!. Using
Eq. ~30!, the diffusion equation~32! may be expressed int
an equivalent equation

]c

]t
5¹@D~f!¹c#1¹@D~f!h8~f!~cL2cS!¹f#. ~33!

B. Dilute solution approximation

The dilute solution limit is often useful for both enginee
ing applications and finding out fundamentals. Here we w
full equations of the present model at the limit. Equation~21!
yields

cS
ecL

cL
ecS

5
~12cS

e!~12cL!

~12cL
e!~12cS!

, ~34!

wherecS
e and cL

e are the equilibrium compositions of soli
and liquid, respectively. Also we can get the following equ
tions:

G~cS ,cL![ f L~cL!2 f S~cS!2~cL2cS! f cL

L ~cL!

5
RT

vm
ln

~12cS
e!~12cL!

~12cL
e!~12cS!

, ~35!

H~f,cS ,cL![
RT

vmf cc
5@12h~f!#cL~12cL!

1h~f!cS~12cS!, ~36!

f cL

L ~cL!5A1
RT

vm
ln

cL

12cL
, ~37!

wherevm is the molar volume,R is the gas constant, andA in
the last equation is a material’s constant. Therefore we
write the phase-field and diffusion equations as

1

M
f t5¹•e2¹f1h8~f!G~cS ,cL!2wg8~f!, ~38!

ct5¹FD~f!H~f,cS ,cL!¹ ln
cL

12cL
G . ~39!

The present model at the dilute solution limit consist of E
~20!, ~34!, ~38!, and~39!.

It should be addressed that our model closly resembles
Steinbachet al. model@17,18#. With h(f)5f, the diffusion
equation~33! becomes

]c

]t
5¹@D~f!¹c#1¹@D~f!~cL2cS!¹f#. ~40!
e

-

n

.

he

At the limit where all compositions go to zero, Eq.~34! can
be further approximated as

cS

cL
5

cS
e

cL
e 5ke, ~41!

where ke is the equilibrium partition coefficient. With Eq
~41! we see

G~cS ,cL!.
RT

vm
@~cL

e2cS
e!2~cL2cS!#

5
RT~12ke!

vmme ~Tm2T2mecL!, ~42!

whereme is the liquidus slope in the phase diagram. The
fore the phase-field equation becomes

1

M
f t5¹•e2¹f1h8~f!

3
RT~12ke!

vmme ~Tm2T2mecL!2wg8~f!. ~43!

A set of equations~20!, ~40!, ~41!, and~43! is identical with
the governing equations in the Steinbach and co-work
model for binary alloy solidification. Therefore the prese
model may be regarded as an extension of their model
cause the present model can be reduced to their model
special case.

C. Equilibrium properties and parameters

Here we find the equilibrium composition, the phase fie
profile and the relationships between material properties
phase field parameters in the present PFM, Eqs.~31! and
~32! together with auxiliary equations~20!, ~21!, and~29!. At
1D stationary state, Eq.~32! yields f cL

L (cL)5 f c
e ~constant!.

According to the condition~21!, therefore, we get

f cL

L ~cL!5 f cS

S ~cS!5 f c
e , ~44!

from which we can seecL(x)5cL
e andcS(x)5cS

e . Thus the
phase-field equation~31! at the equilibrium state becomes

e2
d2f0

dx2
1h8~f0!@ f L~cL

e!2 f S~cS
e!

2~cL
e2cS

e! f cL

L ~cL
e!#2wg8~f0!50, ~45!

wheref0 is the phase-field profile at the equilibrium stat
After multiplying df0 /dx on both side of Eq.~45! and in-
tegrating it fromx52` to x51`,

f L~cL
e!2 f S~cS

e!2~cL
e2cS

e! f cL

L ~cL
e!50. ~46!

Equations~44! and~46! result in the well-known equilibrium
condition

f cS

S ~cS
e!5 f cL

L ~cL
e!5

f L~cL
e!2 f S~cS

e!

cL
e2cS

e , ~47!
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by which the equilibrium compositions of solid and liqu
can be determined at a given temperature.

By using Eq.~46!, the phase field equation~45! at the
equilibrium state reduces to

e2
d2f0

dx2 5w
dg~f0!

df0
. ~48!

With g(f)5f2(12f)2, under the conditions o
f051~solid! at x→2` andf050 ~liquid! at x→1`, the
equilibrium phase-field profile is given by

f0~x!5
1

2 F12tanhS Aw

A2e
xD G . ~49!

Using Eq.~20!, then the equilibrium concentration profile

c0~x!5h~f0~x!!cS
e1$12h@f0~x!#%cL

e . ~50!

By considering the free energy functional corresponding
the original equations~18! and ~19!, it can be easily shown
that the interface energys is given by

s5e2E
2`

1`S df0

dx D 2

dx. ~51!

Using Eq.~49!, direct evaluation of the interface energys
and interface thickness 2l gives

s5
eAw

3A2
, ~52!

2l5aA2
e

Aw
, ~53!

wherea is a constant which is dependent on the definition
the interface thickness, e.g.a.2.2 whenf0 changes from
0.1 to 0.9 at2l,x,l, anda.2.94 whenf0 changes from
0.05 to 0.95. The parameter relationships~52! and ~53! are
the same as those in the PFM for pure materials.

The notable difference between the present model and
WBM model lies in definition of the free energy density f
interfacial region at an equilibrium state. In the WBM mod
@10,13#, in addition to an imposed double-well potenti
wg(f0), there exists an extra double-well potential. The e
tra potential originates from the definition itself of the fre
energy density for the interfacial region, as shown in o
previous paper@23#. In the WBM model, any point within
the interfacial region at an equilibrium state is assumed to
a mixture of solid and liquid with a same compositionc0* (x),
wherec0* (x) is the equilibrium concentration profile in th
WBM model and changes continuously fromcS

e in solid to
cL

e in liquid across the interface. This situation is very simi
to the formulation of the free energy for spinodal decomp
sition by Cahn and Hilliard@29#. Figure 1 shows the typica
free energy curves~solid curves! of solid and liquid against
composition. The free energy densityh(f0) f S(c0* )1@1
2h(f0)# f L(c0* ) at the interfacial region in the WBM mode
lies on the dotted curve in Fig. 1 and the extra potentia
o

f

he

l

-

r

e

r
-

s

represented by the difference (PQ) between the dotted curv
(P) and the common tangent line (Q) @23#, as in Cahn and
Hilliard @29#. This extra potential in the WBM model may b
negligible compared withwg(f0) either at the sharp inter
face limit wherew→` or in an alloy with a very smallcL

e

2cS
e where the height of the extra potential itself is ve

small. With increasing interface thickness or increasingcL
e

2cS
e , however, the extra potential height becomes signific

and cannot be ignored. In the present model, however,
interfacial region at an equilibrium state is defined as a m
ture of solid and liquid with constant compositionscS

e and
cL

e , respectively. The composition and the free energy d
sity without the imposed potentialvg(f) at a certain pointx
within the interfacial region are given by the fraction
weighted average valuesh(f0)cS

e1@12h(f0)#cL
e and

h(f0) f S(cS
e)1@12h(f0)# f L(cL

e), respectively. Thus the ex
tra potential in the WBM model does not appear in t
present model because the free energyh(f0) f S(cS

e)1@1
2h(f0)# f L(cL

e) corresponds to the common tangent line
self.

III. THIN-INTERFACE LIMIT

In this section we focus on the relationship between
phase field mobility and the interface kinetics coefficie
which is a proportional constant between the driving force
solidification and interface moving velocity. The drivin
force of solidification without the solute-drag effect@22# is
given by

DFS5 f L~cL
i !2 f S~cS

i !2~cL
i 2cS

i ! f cL

L ~cL
i !, ~54!

wherecL
i andcS

i are the compositions at the liquid and sol
sides of the interface respectively. With the driving for
given by Eq.~54!, following our previous work@23# on the
WBM model, one can find a relationship between the int

FIG. 1. Free energy densitiy curves of solid and liquid agai
composition.
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face kinetics coefficient and the phase-field mobility in t
present model. However, there is another useful relations
which can correlate PFM for solidification with classic
sharp interface solidification model and its local equilibriu
condition. Such a relationship was first derived by Karm
and Rappel@25# for a PFM of a pure material solidification
They showed that a relationship could be found at a th
interface limit where the interface thickness is small co
pared with the diffusive boundary layer. In this section, u
der an assumption of negligible diffusivity in solid, we wi
derive a corresponding relationship for the present al
PFM at a thin-interface limit condition. At 1D instantaneo
steady state, the governing equations~31! and ~32! become

2
V

M

df

dx
5e2

d2f

dx2
1h8~f!@ f L~cL!2 f S~cS!

2~cL2cS! f cL

L ~cL!#2wg8~f!, ~55!

2V
dc

dx
5

d

dxFD~f!

f cc

d

dx
f cL

L ~cL!G . ~56!

When the diffusivity in solid is negligible, integrating Eq
~56! gives the chemical potential profile across the interfa

f cL

L @cL~x!#5 f cS

S ~cS
i !2VE

2l

x f cc

D~f!
@c~x!2cS

i #dx, ~57!

wherecS
i is the composition at the solid side (x52l) of the

interface andf cc is given by Eq.~29!. To the first oder in the
Péclet number,P52lV/D̃ (D̃: average interface diffusiv-
ity!, the chemical potential profilef c(x) can be written as

f cL

L @cL~x!#5 f cS

S ~cS
i !2VE

2l

x f cc
e

D~f0!
@c0~x!2cS

e#dx,

~58!

where f cc
e 5 f cc(cS

e ,cL
e ,f0). We expandcL(x) and cS(x) in

the bracket of Eq.~55!; cL5cL
e1dcL and cS5cS

e1dcS .
Then by using Eq.~46! it can be shown that

f L~cL!2 f S~cS!2~cL2cS! f cL

L ~cL!

5 f L~cL
e!2 f S~cS

e!2~cL
e2cS

e! f cL

L ~cL!, ~59!

to the first oder inP. We insert Eqs.~58! and ~59! into Eq.
~55!, and after multiplyingdf/dx on both sides of Eq.~55!
we integrate fromx52l to x51l, which yields

V

ME
2l

1lS df0

dx D 2

dx5 f L~cL
e!2 f S~cS

e!2~cL
e2cS

e! f cS

S ~cS
i !

2
V

Di
~cL

e2cS
e!E

1

0S E
2l

x

@c0~x8!

2cS
e# f cc

e dx8D h8~f0!df0 , ~60!
ip,

a

-
-
-

y

e

where only for convenience we assumed a constant diffu
ity Di within the interfacial region. Using Eq.~50! for c0(x),
Eq. ~29! for f cc

e , Eq. ~51! for the interface energy and
relationship

dx

df0

52
e

A2w

1

f0~12f0!
, ~61!

which can be obtained from Eq.~48!, it follows that

f L~cL
e!2 f S~cS

e!2~cL
e2cS

e! f cS

S ~cS
i !

5VF s

Me2 2
e

DiA2w
z~cS

e ,cL
e!G , ~62!

wherez(cS
e ,cL

e) is a temperature dependent function defin
by

z~cS
e ,cL

e![ f cc
S ~cS

e! f cc
L ~cL

e!~cL
e2cS

e!2

3E
0

1 h~f0!@12h~f0!#

@12h~f0!# f cc
S ~cS

e!1h~f0! f cc
L ~cL

e!

3
df0

f0~12f0!
. ~63!

Equation~62! may be written as

~cL
e2cS

e!@ f c
e2 f cS

S ~cS
i !#5aV, ~64!

where a5s/(Me2)2ez(cS
e ,cL

e)/(DiA2w). With a dilute
solution approximation, it can be shown that

f c
e2 f cS

S ~cS
i !.

RT

vm
S 12

cS
i

cS
eD , ~65!

whencS
i is close tocS

e at a small interfacial Pe´clet number.
Thus Eq.~64! gives

T5Tm2me
cS

i

ke 2V
vm

RT

mea

12ke . ~66!

If we define the kinetics coefficient as

b[
vm

RT

mea

12ke 5
vm

RT

me

12ke F s

Me2 2
e

DiA2w
z~cS

e ,cL
e!G ,

~67!

then Eq.~66! recovers the relationship in the classical sha
interface model between the temperature and the interfa
composition:

T5Tm2me
cS

i

ke 2bV. ~68!

Equation~67! permits a vanishing kinetic coefficient by ad
justing the parameters to cancel out two terms in the bra
ets, as in the thin-interface PFM for a pure material@25#.
Note that Eq.~67! is reduced to the relationship at the shar
interface limit condition if we takel;e/Aw→0.
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IV. SOLUTE TRAPPING

The solute trapping occurs when the chemical poten
gradient exists across the diffuse interface@26–28#. The
equality ~21! of the chemical potentials looks as though
will prohibit the gradient across the interface. As mention
previously in Sec. II, the chemical potential varies across
moving interface depending on the position because
chemical potentials in Eq.~21! are values only at the sam
position. Therefore the solute trapping phenomenon is
excluded in the present model when the interface velocit
enough high.

In this section we show that present model correctly
scribes the solute trapping phenomena at a high inter
velocity and compare the calculated partition coefficient w
those predicted from the high velocity asymptotics of t
WBM model @22#. Throughout this section we assume a
lute alloy, a constant diffusivityDi in both the interfacial
region and liquid, and negligible diffusivity in solid.

Integrating the diffusion equation~56! at a 1D steady state
gives

d

dx
f cL

L ~cL!52
V

Di
~c2cS

i ! f cc . ~69!

For a dilute alloy with (12cL)→1 and (12cS)→1, it fol-
lows that

d

dx
f cL

L ~cL!5 f cc
L ~cL!

dcL

dx
.

RT

vm

1

cL

dcL

dx
, ~70!

cS~x!

cL~x!
.

cS
e

cL
e 5ke, ~71!

where the second equation is the dilute approximation of
condition ~21!. Then we can write

c~x!.@12~12ke!h~f!#cL~x!, ~72!

f cc.
RT

vm@12~12ke!h~f!#cL
. ~73!

Therefore Eq.~69! becomes

dcL

dx
1

V

Di
cL5

V

Di

cS
i

12~12ke!h~f!
. ~74!

Under a boundary conditioncL5cS /ke5cS
i /ke at x52l,

the solution of this equation is

cL~x!5
cS

i

ke e2V(x1l)/Di1
V

Di
cS

i e2Vx/Di

3E
2l

x eVx8/Di

12~12ke!h~f!
dx8. ~75!

In the sharp interface limit (l→0) or the thin interface limit
(l!Di /V), it can be easily shown thatcL(x) at x@l con-
verges to the following solution obtained in the classi
sharp-interface model with the same diffusivity in liquid
Di :
l

d
e
e

ot
is

-
ce

-

e

l

cL~x!5cS
i 2cS

i S 12
1

keDe2Vx/Di, ~76!

as expected. From Eqs.~72! and~75!, the concentration pro-
file c(x) across the interface is given by

c~x!5@12~12ke!h~f!#FcS
i

ke e2V(x1l)/Di

1
V

Di
cS

i e2Vx/DiE
2l

x eVx8/Di

12~12ke!h~f!
dx8G . ~77!

This equation yields the partition coefficient as a function
the interface velocity. The partition coefficient may be d
fined by following two different ways: One is the ratio of th
composition at the solid side of the interface~that is,cS

i ) to
the maximum composition across the interface, which
been used by Ahmadet al. @22#. The other is the ratio of the
compositioncS

i at the solid side of the interface to the com
position c(l) at the liquid side of the interface. When w
follow the latter definition, the partition coefficientk
5cS

i /c(l) at a given interface velocity and phase-field pr
file can be directly read from Eq.~77!. In this case, it can be
shown thatk→ke at V→0 andk→1 at V→`, as expected
in the standard solute trapping model. In both definitions,
partition coefficient as a function of the interface veloc
can be found only if the phase-field profile across the int
face is known. In principle, the phase-field profile as a fun
tion of interface velocity can be obtained by solving t
phase-field equation. However, Eq.~77! was derived from
only diffusion equation~56! by introducing a phase field
only for mathematical convenience. It may be useful to s
vey the solute trapping behavior for any assumed phase-
profile at2l,x,l.

By using the partition coefficient defined by Ahmadet al.
@22#, here we survey the solute trapping behavior as a fu
tion of V for a givenke. To do this we rewrite Eq.~77! into
a dimensionless form

c̃5@12~12ke!h~f!#F 1

ke e2P( x̃11/2)

1Pe2Px̃E
21/2

x̃ ePx̃8

12~12ke!h~f!
dx̃8G , ~78!

wherex̃5x/2l and c̃5c/cS
i . Therefore the relative concen

tration profilec̃, and thereforek, is governed by the interfa
cial Péclet numberP, the equilibrium partition coefficientke,
and the phase-field profile. We calculated the partition co
ficient k51/c̃max by numerical integration of Eq.~78! with
the assumption that the phase-field profile remains
changed from the stationary profilef0(x), that is,

f~ x̃!5f0~ x̃!5
1

2
@12tanh~a x̃!#, ~79!

in a dimensionless form. And we adoptedh(f)5f2(3
22f) anda52.94 with whichf changes from 0.05 to 0.95
at 2l,x,l. Figure 2 shows the variations of concentrati
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PRE 60 7193PHASE-FIELD MODEL FOR BINARY ALLOYS
profiles c̃ calculated atke50.8 and several different value
of P. For a lowP, cmax/cS

i is close to the equilibrium value
1.25, and with increasingP the height of concentration spik
around the interface and thickness of diffusive bound
layer decreases as expected. Figure 3 shows variations o
partition coefficient as a function ofP, where the filled
circles are prediction from Eq.~78! and the solid curve from
the high velocity asymptotics of the WBM model@22# with a
constant diffusivity at the interfacial region, which with ou
definition of interface thickness can be written as

k~P!5
ke1gP

11gP
, ~80!

where

g5
8~12ke!

6a ln~1/ke!
. ~81!

The partition coefficient curves from Eq.~78! and the high
velocity asymptotics of the WBM model appear to be nea
identical. With decreasingke, the partition coefficient curve
from Eq. ~78! moved significantly to the highP direction,
which has also been observed in the high velocity asymp
ics of the WBM model@22#. A detailed analysis of the par
tition coefficient in the present model and a comparison w
the reported experimental results will appear elsewhere@31#.

One interesting situation is the case with the compl
solute trapping, that is, partitionless solidification. For pa
tionless solidification the interface temperatureT should be
lower thanT0 temperature where the free energy densities
solid and liquid become equal. For a dilute solution, the c
dition can be written as@22#

T,T05Tm1c`

me ln ke

12ke , ~82!

FIG. 2. Variations of concentration profilesc(x)/cS
i , calculated

at ke50.8 and several different values ofP, wherecS
i is the solid

composition at the interface and 2l is the interface thickness.
y
the

y

t-

h

e
-

f
-

where c` is the bulk composition. The interface velocit
during the partitionless solidification is given by (T0
2T)/b @22#. Here we will derive similar result from the
present alloy PFM. For a dilute solution the phase-field eq
tion in a 1D steady state is

2
V

M

df

dx
5e2

d2f

dx2
1h8~f!

RT

vm
@~cL

e2cS
e!

2~cL2cS!#2wg8~f!. ~83!

Also, for the partitionless solidification, Eq.~72! yields

cL5
c`

12~12ke!h~f!
. ~84!

With the approximation~71! for a dilute solution, we can ge

2
Vvm

MRT

df

dx
5e2

d2f

dx2
1h8~f!~12ke!cL

e

1c`

d

df
ln@12~12ke!h~f!#2wg8~f!.

~85!

After multiplying df/dx on both sides of Eq.~85!, we inte-
grate from x52` to x51`, which yields a solvability
condition

Vvm

MRTE2`

1`S df

dx D 2

dx5~12ke!cL
e1c` ln ke. ~86!

Therefore, the condition required for the partitionless soli
fication (V.0) is given by

~12ke!cL
e1c` ln ke.0, ~87!

FIG. 3. Variations of the partition coefficient as a function
interfacial Pe´clet numberP, where the filled circles are the predic
tion from Eq. ~78! and the solid curve from the WBM’s high ve
locity asymptotics with a constant diffusivity at the interfacial r
gion.
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7194 PRE 60SEONG GYOON KIM, WON TAE KIM, AND TOSHIO SUZUKI
which is identical with Eq.~82! becausecL
e5(Tm2T)/me.

Also if f(x).f0(x), then Eq.~86! can be written in the
form (T02T)5bV, where

b5
vm

RT

me

12ke

s

Me2 , ~88!

which is the same relationship as that at the sharp-inter
limit condition, that is, Eq.~67! with l;e/Aw→0. Thus the
sharp interface PFM yields the correct interface velocity
the partitionless solidification.

V. NUMERICAL SIMULATION

For 1D steady state solidification, the classical sharp
terface model can be exactly soluble. We solve numeric
the present alloy PFM for 1D steady state solidification
those situations and compare the calculated results with
exact solutions.

The 1D isothermal system initially has an uniform bu
compositionc` and a temperature with a given underco
ing. A solid phase starts to grow from one end of the syst
The system can reach a steady state either when the sy
temperature is lower than the solidus or when there exis
solute sink in liquid, engulfing all solute influx from it
neighbor, even if the system temperature is between sol
and liquidus temperatures. In the latter case which w
adopted in our previous work@23# for steady-state simula
tions, the solute sink continuously move with the same
stantaneous velocity as the interface, maintaining a p
scribed distance from the moving interface. In the class
sharp-interface model with diffusion in liquid only, both situ
ations can be described by

2V
dc

dx
5DL

d2c

dx2
, ~89!

V~12ke!ci52DLS dc

dxD
i

, ~90!

T5Tm2meci2bV, ~91!

c~j* !5c` , ~92!

where j* is the prescribed distance between the interf
and the solute sink in liquid, andci is the composition at the
interface. The case withj* →` corresponds to the forme
situation and the case with a finitej* corresponds to the
latter situation. The exact solution of the concentration p
file in Eqs.~89!–~92! is

c~x!5c`1c`

~12ke!~e2Vx/DL2e2Vj* /DL!

12~12ke!~12e2Vj* /DL!
. ~93!
ce

r

-
ly
t
he

.
em
a

us
s

-
e-
al

e

-

Then the interface velocity is determined from

bV5Tm2T2
mec`

12~12ke!~12e2Vj* /DL!
. ~94!

Whenj* →`, Eq.~94! shows that a positive interface veloc
ity is guaranteed only when the temperatureT is lower than
the solidus temperatureTsol5Tm2mec` /ke. Whenj* takes
a finite value, on the other hand, there exists a positive
locity satisfying Eq.~94! whenever the temperature is lowe
than the liquidus temperatureTliq5Tm2mec` . It should be
mentioned that in the case with a finitej* there exists an
unique positive velocity in Eq.~94! even whenb50, which
enables us to test the condition for the vanishing interf
kinetics coefficient at the thin-interface limit. We will com
pare the exact solution~94! with the results obtained from
numerical calculation of our PFM at above two differe
situations, that is, with and without a solute sink in liquid

Another situation where the exact analytic solution
available is the case of the partitionless solidification. In t
case, we showed in Sec. IV that the present PFM yields
interface velocityV5(T02T)/b. This point will also be
tested.

For computational works, we used the dilute solution v
sion of our model; Eqs.~20!, ~34!, ~38!, and ~39! with
h(f)5f2(322f). The steady-state solution was found b
observing the long time behavior of the full dynamic equ
tions. The detailed numerical procedure is similar to th
used in the previous work@23#. The model system was se
lected to be a Ni-Cu~0.05 mole fraction! alloy, which was
regarded as a dilute solution rather than an ideal solut
The material parameters used for computation are as follo
DS51310214 m2/s, DL5131029 m2/s, Tm51728.0 K,
me5310.9 K, ke50.7965, s50.37 J/m2, b510 K s/m.
These data yield the liquidus and solidus temperatures
Tliq51712.5 andTsol51708.5, respectively. The grid siz
Dx was 1 nm and the interface thickness 2l over where the
phase field changes from 0.05 to 0.95 was taken as 8Dx.
Within the interfacial region, the diffusivityDi was taken as
the same value asDL . With these parameters, two kinds o
computations were performed. In the first series, we tookb
510 K s/m andj* →` and measured the interface velociti
at various levels of undercooling below the solidus tempe
ture. In this series, both the thin interface and sharp interf
PFMs were compared with each other. The second serie
computation was performed at a constant temperature~1709
K! to test the condition for vanishing kinetics coefficient
the thin-interface PFM. In this series, we set the parame
to yield b50 in Eq.~67! and measured the interface veloci
and the solid compositions at variousj* values. The func-
tion z(cS

e ,cL
e) of Eq. ~67! required for the thin-interface PFM

was calculated from the dilute solution approximation of E
~63!:
z~cS
e ,cL

e!5
RT

vm
~cL

e2cS
e!2E

0

1 f~12f!~322f!~2f11!

~12f!2~2f11!cL
e~12cL

e!1f2~322f!cS
e~12cS

e!
df, ~95!



v

io

t
e
M
de
fa
a

n
a
-
ik
th
c
rp
rt

lo

em
an
lu

led
FM
el-
oc-
l
the

een
po-

g
e
er
ce

he
M
ity
,
ef-

the
n,
in

ly
l-
ion
ua-

te

e
s
s
ar

i-

m
een
na-

he
FM
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as a function of temperature, where we usedh(f)5f2(3
22f).

Figure 3 shows variations of the steady-state interface
locity, calculated from the case without solute sink (j*
→`), as a function of undercoolingTsol2T. The solid
straight line is the analytic solution~94! of the classical
sharp-interface model, the dotted line is the analytic solut
for the partitionless solidificationV5(T02T)/b, the filled
circles and the crosses are the calculated results from
thin-interface PFM and the sharp-interface PFM, resp
tively. The interface velocity from the sharp-interface PF
deviates from the analytic solution by a constant ratio, in
pendent of the undercooling. On the other hand, the inter
velocity from the thin-interface PFM converges to the an
lytic solution as the undercooling decreases. The deviatio
high interface velocity is because the thin-interface limit w
derived at the low Pe´clet number condition. At undercool
ings close to 10 K, the height of the concentration sp
across the interface appeared to be negligible in both
PFMs, which may be regarded as the partitionless solidifi
tion. As seen in Fig. 4, the interface velocity from the sha
interface PFM approaches the analytic solution for the pa
tionless solidification at large undercooling, as expected
Sec. IV.

Figure 5 shows variations of steady state interface ve
ity, calculated without kinetic effect (b50), as a function of
distancej* between interface and solute sink. The syst
temperature was 1709 K which is between the solidus
liquidus temperatures. The curved line is the analytic so
tion ~94! for the classical sharp-interface model and the fil

FIG. 4. Variations of steady state interface velocity, calcula
at j* →`, as a function of undercoolingTsol2T. The solid straight
line is the analytic solution~94! of the classical sharp-interfac
model, the dotted line is the analytic solution for the partitionle
solidification V5(T02T)/b, and the filled circles and the crosse
are the calculated results from the thin-interface PFM and the sh
interface PFM, respectively.
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d
-circles are the calculated results from the thin-interface P
with vanishing kinetics coefficient. Two results are in exc
lent agreement with each other. The error in interface vel
ity was within 2 % forj* .40Dx. In order to see in detai
the situation of the vanishing kinetics effect, we checked
solid compositions with varyingj* , which is shown in Fig.
6. The vertical axis represents the relative difference betw
the measured solid composition and the equilibrium com
sition, scaled by the equilibrium composition (cS

e). The de-
viation of the solid composition atj* .40Dx from the equi-
librium composition is within 0.06%. Owing to the vanishin
interface kinetics condition in the thin-interface PFM, th
solid composition stays at the equilibrium value, in oth
words, local equilibrium state is maintained at the interfa
without kinetic undercooling. The physical meaning of t
vanishing kinetics condition in the thin-interface alloy PF
may be interpreted as follows: A finite phase-field mobil
decreases the solid composition@10,23#. On the other hand
the finite interface thickness bringing the solute trapping
fect increases the solid composition@22,23#. At the condition
where two opposing effects are exactly cancelled out,
solid composition recovers the equilibrium compositio
which is the condition for vanishing kinetics coefficient
the thin-interface PFM.

Until now our numerical simulations were presented on
for a dilute alloy. In dendritic simulations of nondilute a
loys, there are some complexities related with the condit
~21! of the equal chemical potentials in solving a set of eq
tions ~20!, ~21!, ~31!, and~32! or equations~20!, ~21!, ~31!,
and ~33!. Let us suppose that all the values ofcS

n , cL
n , cn,

and fn in current nth time step are given. In the next (n
11)th time step we can calculatecn11 andfn11 from Eqs.
~31! and ~33! and by using them we should findcS

n11 and

d

s

p-

FIG. 5. Variations of interface velocity, calculated without k
netic effect (b50), as a function of distancej* between the inter-
face and a solute sink in liquid, which engulfs all solute influx fro
its neighbor. The system temperature is 1709 K which is betw
the solidus and liquidus temperatures. The curved line is the a
lytic solution ~94! for the classical sharp-interface model and t
filled circles are the calculated results from the thin-interface P
with vanishing kinetics coefficient.
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7196 PRE 60SEONG GYOON KIM, WON TAE KIM, AND TOSHIO SUZUKI
cL
n11 from Eqs.~20! and ~21!. This last step is a very time

consuming iteration procedure because one should work
complex thermodynamic data. Futhermore, when the solu
ity in solid is low, the iteration may not converge because
chemical potential becomes infinite ascS→0. These serious
problems, especially in two-dimensional simulations, can
tackled as follows: Before the simulation, the thermod
namic data given by the free energies of the related phase
functions of compositions are transformed into the compo
tions as functions of the chemical potentials. The compo
tions cS and cL may be expressed by power series of t
chemical potentialsf cS

S 5 f cL

L 5 f c or by tables. With the cal-

culatedcn11 andfn11, now we can find chemical potentia
f c

n11 from Eq. ~20! by the Newton-Raphson method, whe
the iteration procedure is very efficient: The errors in co
positions after only three iterations were less then 1024% in
general. Then the compositionscs

n11 and cL
n11 can be di-

rectly read from the predetermined relationship betwe
compositions and chemical potentials. Note that we do
solve Eq. ~21! because it is automatically satisfied in th
above procedure. Indeed we have simulated the dend
growth during two-dimensional isothermal solidification

FIG. 6. Variation of solid composition withj* values calculated
by the thin-interface PFM model with vanishing kinetics coef
cient. The vertical axis represents the relative solid composi
scaled by the equilibrium composition (cS

e).
ll,

D

th
il-
e

e
-
as

i-
i-

-

n
ot

tic

nondilute Al-Cu alloys by using published thermodynam
data @29,30#. The calculation time was increased by on
about 10%, when compared with the simulation using
dilute solution approximation where the iteration is n
needed because Eqs.~20! and~21! are reduced to a quadrati
equation forcS

n11 or cL
n11 .

VI. CONCLUSION

We presented a PFM for solidification in binary alloy
which was found from the PFM for pure material by dire
comparison of the variables for a pure material solidificat
and alloy solidification. The model appears to be equival
to the WBM model but has a different definition of the fre
energy density for the interfacial region. An extra potent
originated from the free energy density definition in t
WBM model disappears in this model. At the dilute solutio
limit, the model is reduced to the Steinbach and co-work
model.

A relationship between the phase-field mobility and t
interface kinetics coefficient was derived at a thin-interfa
limit condition under an assumption of negligible diffusivit
in solid phase. The effect of a finite phase-field mobil
tends to decrease the solid composition and the effec
finite interface thickness increases the solid composition.
the condition with a vanishing kinetics coefficient, both e
fects are exactly cancelled out resulting in maintenance
local equilibrium at the interface. For a dilute alloy, a stead
state solution of the concentration profile across the diff
interface was obtained as a function of the interface velo
and the resultant partition coefficient appears to be ne
identical with that from the WBM model.

For the 1D steady state alloy solidification, we perform
numerical simulations of the phase-field model at the sit
tions where the classical sharp-interface model is exa
soluble: At low interface velocities, the simulated resu
from the thin-interface PFM were in excellent agreeme
with the exact solutions. As the partition coefficient becom
close to unity at high interface velocities, whereas, the in
face velocity from the sharp-interface PFM converged to t
given by the standard model for partitionless solidificatio
as predicted.
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